#
Tag Archives: dimensions

Four years ago I started pondering the **tesseract** and four-dimensional space. I first learned about them back in grade school in a science fiction short story I’d read. (A large fraction of my very early science education came from SF books.)

Greg Egan touched on tesseracts in his novel *Diaspora*, which got me thinking about them and inspired the post *Hunting Tesseracti*. That led to a general exploration of multi-dimensional spaces and rotation within those spaces, but I continued to focus on trying to truly understand the tesseract.

Today we’re going to visit the 4D space *inside* a tesseract.

Continue reading

3 Comments | tags: 1D, 2D, 3D, 4D, cube, dimensions, square, tesseract | posted in Math, Sideband

Here on the 4^{th} day of the 4^{th} month, I feel I really should be writing about the 4^{th} dimension. I did say that I would during March Mathness, and I tried to set the math foundation here and here.

But two problems: Firstly, I’m kinda burned out. Those three posts were a bit of work, diagrams & models & math (oh, my!), and then trying to explain them clearly. Secondly, obviously no one finds this interesting except me, so not much motivation for the effort involved. Which was expected (kinda the story of my life). I also said these posts were as much recording my notes as attempts to share.

But it is 4/4 (and no Twins game today), so I thought I’d try winging it anyway.

Continue reading

15 Comments | tags: 2D, 3D, 3D space, 4D, coordinates, cube, dimensions, square, tesseract | posted in Science

I’ve been hinting all month about **rotation**, and the time has finally come to dig into the topic. As mentioned, my interest began with wanting to understand what it means to rotate a **tesseract** — particularly what’s *really* going on in a common animation that I’ve seen. What’s the math there?

This interest in rotation is part of a larger interest: trying to wrap my head around the idea of a fourth *physical* dimension. (Time is sometimes called the fourth dimension, but not here.) To make it as easy as possible, for now I’m focusing only on tesseractae, because “squares” are an easy shape.

After chewing at this for a while (the tesseract post was late 2016), just recently new doors opened up, and I think this journey is almost over!

Continue reading

2 Comments | tags: 2D, 3D, 3D space, 4D, coordinates, cube, dimensions, geometry, line, point, rectangular coordinates, right angle, rotation, square, tesseract | posted in Math

If you’re anything like me, you’ve probably spent a fair amount of time wondering *what is the deal* with tesseracts? Just exactly what the heck is a “four-dimension cube” anyway? No doubt you’ve stared curiously at one of those 2D images (like the one here) that fakes a 3D image of an attempt to render a 4D tesseract.

Recently I spent a bunch of wetware CPU cycles, and made lots of diagrams, trying to wrap my mind around the idea of a tesseract. I think I made some progress. It was an interesting diversion, and at least I think I understand that image now!

FWIW, here’s a post about what I came up with…

Continue reading

2 Comments | tags: 3D space, coordinates, cube, dimensions, geometry, line, point, rectangular coordinates, right angle, square, tesseract | posted in Math

Put on your arithmetic caps, dear readers. Also your math mittens, geometry galoshes and cosine coats. Today we’re venturing after numeric prey that lurks down among the lines and angles.

There’s no danger, at least not to life or limb, but I can’t promise some ideas won’t take root in your brain. There’s a very real danger of learning something when you venture into dark territory such as this. Even the strongest sometimes succumb, so hang on to your hats (and galoshes and mittens and coats and brains).

Today we’re going after *vectors* and *scalars* (and some other game)!

Continue reading

13 Comments | tags: 2D, 3D, azimuth, coordinates, declination, dimensions, direction, elevation, location, scalars, speed, technology, vectors, velocity | posted in Math

3D holograms! Me want!!

Last time I introduced you to the idea of a *time-space diagram*, which is a kind of map used to describe motion. As with many maps and diagrams, we choose to use a flat, two-dimensional representation. Someday hologram technology may advance to casual use of three-dimensional images, but so long as we use paper and display screens, we’re stuck with two.

Motion is movement in both space *and* time, so we want to use one of our two dimensions to represent time. That leaves us with only one remaining dimension for space, so our diagrams exist in a reduced one-dimensional world.

Today I’ll explore that world in more detail.

Continue reading

7 Comments | tags: 1D, 2D, 3D, diagrams, dimensions, maps, motion, space, Special Relativity, time, time-space, time-space diagram | posted in Physics

Last week I introduced you to the idea of *relative motion* between *frames of reference*. We’ve explored this form of relativity scientifically since Galileo, and it bears his name: *Galilean Relativity* (or Invariance). Moving objects within a (relatively) moving frame move differently according to those outside that frame.

I also introduced you to the idea that light doesn’t follow that rule; that light moves the same way to all observers. This is what makes Special Relativity different. It turns out that, if a frame is (relatively) moving fast enough, some bizarre things happen.

*Time-space diagrams* will help us explore that.

Continue reading

2 Comments | tags: 1D, 2D, 3D, diagrams, dimensions, Edwin Abbott, Emmy Noether, Flatland, maps, motion, Special Relativity, time, time-space, time-space diagram | posted in Physics

The maps you find in some buildings and malls have a little marker flag that says, “You are here!” The marker connects the physical reality of where you are standing at that moment with a specific point on a little flat map.

Your GPS device provides your current location in terms of *longitude* and *latitude*. Those numbers link your physical location with a specific point on *any* globe or map of the Earth.

But to *fully* represent our location, longitude and latitude are not quite enough. (We might be high overhead in a hot air balloon!) To fully represent our position, we need a little more ‘tude, but in this case that’s *altitude*, not attitude.

We need three (and only three) *coordinates* to completely represent our location in space. This post is about why.

Continue reading

16 Comments | tags: 2D, 3D, 4D, 5D, altitude, Calabi-Yau, Cartesian, coordinates, dimensions, latitude, longitude, polar coordinates, rectangular coordinates | posted in Basics, Math, Physics, Science