Tag Archives: Flatland

Flat Space of the Torus

Flat Earth!

To describe how space could be flat, finite, and yet unbounded, science writers sometimes use an analogy involving the surface of a torus (the mathematical abstraction of the doughnut shape). Such a surface has no boundary — no edge.  And despite being embedded in three-dimensional space, the torus surface, if seen in terms of compensating surface metric, is indeed flat.

Yet a natural issue people have is that the three-dimensional embedding is clearly curved, not flat. It’s easy to see how wrapping a flat 2D sheet into a cylinder doesn’t distort it, but hard to see why wrapping a cylinder around a torus doesn’t stretch the outside and compress the inside.

In fact it does, but there are ways to eat our cake (doughnut).

Continue reading


SR #5: Diagrams!

FlatlandLast week I introduced you to the idea of relative motion between frames of reference. We’ve explored this form of relativity scientifically since Galileo, and it bears his name: Galilean Relativity (or Invariance). Moving objects within a (relatively) moving frame move differently according to those outside that frame.

I also introduced you to the idea that light doesn’t follow that rule; that light moves the same way to all observers. This is what makes Special Relativity different. It turns out that, if a frame is (relatively) moving fast enough, some bizarre things happen.

Time-space diagrams will help us explore that.

Continue reading