Category Archives: Math

The Heart of the Mandelbrot

In recent posts I’ve presented the complex numbers and the complex plane. Those were just stepping stones to this post, which involves a basic fact about the Mandelbrot set. It’s something that I stumbled over recently (after tip-toeing around it many times, because math).

This is one of those places where something that seems complicated turns out to have a fairly simple (and kinda cool) way to see it when approached the right way. In this case, it’s the way multiplication rotates points on the complex plane. This allow us to actually visualize certain equations.

With that, we’re ready to move on to the “heart” of the matter…

Continue reading


The Complex Plane

In the first post I explained why the mathematical “imaginary” number i is “real” (in more than one sense of the word). That weird number is just a stepping stone to the complex numbers, which are themselves stepping stones to the complex plane.

Which, in turn, is a big stepping stone to a fun fact about the Mandelbrot I want to write about. (But we all have to get there, first.) I think it’s a worthwhile journey — understanding the complex plane opens the door to more than just the Mandelbrot. (For instance, Euler’s beautiful “sonnet” also lives on the complex plane.)

As it turns out, the complex numbers cause this plane to “fly” a little bit differently than the regular X-Y plane does.

Continue reading


“Imaginary” Parabola

Graph of ax2 for diff a values.
(green < 1; blue = 1; red > 1)

This is a little detour before the main event. The first post of this series, which explained why the imaginary unit, i, is important to math, was long enough; I didn’t want to make it longer. However there is a simple visual way of illustrating exactly why it seems, at least initially, that the original premise isn’t right.

There is also a visual way to illustrate the solution, but it requires four dimensions to display. Three dimensions can get us there if we use some creative color shading, but we’re still stuck displaying it on a two-dimensional screen, so it’ll take a little imagination on our part.

And while the solution might not be super obvious, the problem sure is.

Continue reading


“Imaginary” Numbers

Yes, this is a math post, but don’t run off too quickly. I’ll keep it as simple as possible (but no simpler), and I’ll do all the actual math so you can just ride along and watch. What I’m about here is laying the groundwork to explain a fun fact about the Mandelbrot.

This post is kind of an origin story. It seeks to explain why something rather mind-bending — the so-called “imaginary numbers” — are actually vital members of the mathematical family despite being based on what seems an impossibility.

The truth is, math would be a bit stuck without them.

Continue reading


The Hexagon

I hadn’t really planned to, but it’s both Pi Day and Albert Einstein. As a fan of both the number and the man, it seems like I should post something.

But I’ve written a lot about pi and Einstein, so — especially not having planned anything — I don’t have anything to say about either right now. In any event, I’m more inclined to celebrate Tau Day when we double the pi(e). I do have something that’s maybe kind vaguely of pi-ish. It’s something I was going to mention when I wrote about Well World.

It’s just a little thing about hexagons.

Continue reading


Number Islands

In the Rational vs Real post I mentioned that real numbers were each “an infinitely tiny island separated from direct contact with all other numbers.” The metaphor of each real number as an island comes from how, given any real number, it’s not possible to name the next (or previous) real number.

It’s easy enough to name a particular real number. For instance 1.0 are 3.14159… real numbers. There are infinitely many more we can name, but given any one of them, there is no way to get to any other number other than by explicitly naming it, too.

This applies to a variety of numeric spaces.

Continue reading


Rational vs Real

One of the great philosophical conundrums involves the origin of numbers and mathematics. I first learned of it as Platonic vs Aristotelian views, but these days it’s generally called Platonism vs Nominalism. I usually think of it as the question of whether numbers are invented or discovered.

Whatever it’s called, there is something transcendental about numbers and math. It’s hard not to discover (or invent) the natural numbers. Even from a theory standpoint, the natural numbers are very simply defined. Yet they directly invoke infinity — which doesn’t exist in the physical world.

There is also the “unreasonable effectiveness” of numbers in describing our world.

Continue reading


Sideband #68: More Fraction Digits

The last Sideband discussed two algorithms for producing digit strings in any number base (or radix) for integer and fractional numeric values. There are some minor points I didn’t have room to explore in that post, hence this followup post. I’ll warn you now: I am going to get down in the mathematical weeds a bit.

If you had any interest in expressing numbers in different bases, or wondered how other bases do fractions, the first post covered that. This post discusses some details I want to document.

The big one concerns numeric precision and accuracy.

Continue reading


Sideband #67: Fraction Digits in Any Base

Fractional base basis.

I suspect very few people care about expressing fractional digits in any base other than good old base ten. Truthfully, it’s likely not that many people care about expressing factional digits in good old base ten. But if you’re in the tiny handful of those with an interest in such things — and don’t already know all about it — read on.

Recently I needed to figure out how to express binary fractions of decimal numbers. For example, 3.14159 in binary. And I needed the real thing — true binary fractions — not a fake that uses integers and a virtual decimal point.

The funny thing is: I think I’ve done this before.

Continue reading


Abacus and Slide Rule

Ye Olden Tools of Yore

I’ve been meaning to write an Abacus post for years. I used one in my first job, back in high school, and they’ve appealed to me ever since. Many years ago I learned there were people who had no idea how an abacus worked. Until then I hadn’t internalized that it wasn’t common knowledge (maybe a consequence of learning something at an early age).

Recently, browsing through old Scientific American issues before recycling them, I read about slide rules, another calculating tool I’ve used, although, in this case, mainly for fun. My dad gave me his old slide rule from when he considered, and briefly pursued, being an architect.

So killing two birds with one stone…

Continue reading