Tag Archives: irrational numbers

Happy Pi Day!

pi pastryWell, it’s Pi Day once again (although this date becomes more and more inaccurate as the century proceeds). So, once again, I’ll opine that Tau Day is cooler. (see: Happy Tau Day!)

Last year, for extra-special Pi Day, I wrote a post that pretty much says all I have to say about Pi. (see: Here Today; Pi Tomorrow) That post was actually published the day before. I used the actual day to kick off last Spring’s series on Special Relativity.

So what remains to be said? Not much, really, but I’ve never let that stop me before, so why start now?

Continue reading


Beautiful Math

Take a moment to gaze at Euler’s Identity:

Eulers Identity

It has been called “exquisite” and likened to a “Shakespearean sonnet.” It has earned the titles “the most famous” and “the most beautiful” formula in all of mathematics, and, in a mere seven symbols, symbolizes much of its foundation.

Today we’re going to graze on it!

Continue reading


Here Today; Pi Tomorrow

pi pastry

It’s pi day! Be irrational!

Earlier this week I mentioned that “this coming Saturday is a doubly special date (especially this year).” One of the things that makes it special is that it is pi day — 3/14 (at least for those who put the month before the day). What makes it extra-special this year is that it’s 3/14/15— a pi day that comes around only once per century. (Super-duper extra-special pi day, which happens only once in a given calendar, happened way back on 3/14/1529.)

I’ve written before about the magical pi, and I’m not going to get into it, as such, today. I’m more of a tau-ist, anyway; pi is only half as interesting. (Unfortunately, extra-special tau day isn’t until 6/28/31, and the super-duper extra-special day isn’t until 6/28/3185!)

What I do want to talk about is a fascinating property of pi.

Continue reading


Sideband #56: Spelling Numbers

mathsWe’re still motoring through numeric waters, but hang in there; the shore is just ahead. This is the last math theory post… for now. I do have one more up my sleeve, but that one is more of an overly long (and very technical) comment in reply to a post I read years ago. If I do write that one, it’ll be mainly to record the effort of trying to figure out the right answer.

This post picks up where I left off last time and talks more about the difference between numeric values and how we represent those values. Some of the groundwork for this discussion I’ve already written about in the L26 post and its followup L27 Details post. I’ll skip fairly lightly over that ground here.

Essentially, this post is about how we “spell” numbers.

Continue reading


Sideband #54: Cantor’s Diagonal

mathsBe warned: these next Sideband posts are about Mathematics! Worse, they’re about the Theory of Mathematics!! But consider sticking around, at least for this one. It fulfills a promise I made in the Infinity is Funny post about how Georg Cantor proved there are (at least) two kinds of infinity: countable and uncountable. It also connects with the  Smooth or Bumpy post, which considered differences between the discrete and the continuous.

This first one is pretty easy. The actual math involved is trivial, and I think it’s fascinating how the Yin/Yang of separate units versus a smooth continuum seems a fundamental aspect of reality. We can look around to see many places characterized by “bumpy” or “smooth” (including Star Trek). (The division lies at the heart of the conflict between Einstein’s Relativity and quantum physics.)

So let’s consider Cantor.

Continue reading


Infinity is Funny

You probably have some idea of what infinity means. Something that is infinite goes on forever. But it might surprise you to know that there are different kinds of infinity, and some are bigger than others!

As a simple example, a small circle is infinite in the sense that you can loop around and around the circle forever. At the same time, your entire path along the circle is bounded in the small area of the circle. Compare that to the straight line that extends to infinity. If you  travel that line, you follow a path that goes forever in some direction.

What if we draw a larger circle outside the small circle. If there are an infinite number of points on the small circle and an infinite number of points on the large circle, does the larger circle have the same number of points as the small one? [The answer is yes.]

To understand all this, we have to first talk a bit about numbers.

Continue reading