Tag Archives: quantum mechanics

Objective Collapse

In the last four posts (Quantum Measurement, Wavefunction Collapse, Quantum Decoherence, and Measurement Specifics), I’ve explored the conundrum of measurement in quantum mechanics. As always, you should read those before you read this.

Those posts covered a lot of ground, so here I want to summarize and wrap things up. The bottom line is that we use objects with classical properties to observe objects with quantum properties. Our (classical) detectors are like mousetraps with hair-triggers, using stored energy to amplify a quantum interaction to classical levels.

Also, I never got around to objective collapse. Or spin experiments.

Continue reading


Measurement Specifics

In the last three posts (Quantum Measurement, Wavefunction Collapse, and Quantum Decoherence), I’ve explored one of the key conundrums of quantum mechanics, the problem of measurement. If you haven’t read those posts, I recommend doing so now.

I’ve found that, when trying to understand something, it’s very useful to think about concrete real-world examples. Much of my puzzling over measurement involves trying to figure out specific situations and here I’d like to explore some of those.

Starting with Mr. Schrödinger’s infamous cat.

Continue reading


Quantum Decoherence

In the last two posts (Quantum Measurement and Wavefunction Collapse), I’ve been exploring the notorious problem of measurement in quantum mechanics. This post picks up where I left off, so if you missed those first two, you should go read them now.

Here I’m going to venture into what we mean by quantum coherence and the Yin to its Yang, quantum decoherence. I’ll start by trying to explain what they are and then what the latter has to do with the measurement problem.

The punchline: Not very much. (But not exactly nothing, either.)

Continue reading


Wavefunction Collapse

The previous post began an exploration of a key conundrum in quantum physics, the question of measurement and the deeper mystery of the divide between quantum and classical mechanics. This post continues the journey, so if you missed that post, you should go read it now.

Last time, I introduced the notion that “measurement” of a quantum system causes “wavefunction collapse”. In this post I’ll dig more deeply into what that is and why it’s perceived as so disturbing to the theory.

Caveat lector: This post contains a tiny bit of simple geometry.

Continue reading


Quantum Measurement

Over the last handful of years, fueled by many dozens of books, lectures, videos, and papers, I’ve been pondering one of the biggest conundrums in quantum physics: What is measurement? It’s the keystone of an even deeper quantum mystery: Why is quantum mechanics so strangely different from classical mechanics?

I’ll say up front that I don’t have an answer. No one does. The greatest minds in science have chewed on the problem for almost 100 years, and all they’ve come up with are guesses — some of them pretty wild.

This post begins an exploration of the conundrum of measurement and the deeper mystery of quantum versus classical mechanics.

Continue reading


Smolin: Einstein’s Unfinished Revolution

Earlier this month I posted about Quantum Reality (2020), Jim Baggott’s recent book about quantum realism. Now I’ve finished another book with a very similar focus, Einstein’s Unfinished Revolution: The Search for What Lies Beyond the Quantum (2019), by Lee Smolin.

One difference between the books is that Smolin is a working theorist, so he offers his own realist theory. As with his theory of cosmic selection via black holes (see his 1997 book, The Life of the Cosmos), I’m not terribly persuaded by his theory of “nads” (named after Leibniz’s monads). I do appreciate that Smolin himself sees the theory as a bit of a wild guess.

There were also some apparent errors that raised my eyebrows.

Continue reading


Baggott: Quantum Reality

I recently read, and very much enjoyed, Quantum Reality (2020) by Jim Baggot, an author (and speaker) I’ve come to like a lot. I respect his grounded approach to physics, and we share that we’re both committed to metaphysical realism. Almost two years ago, I posted about his 2014 book Farewell to Reality: How Modern Physics Has Betrayed the Search for Scientific Truth, which I also very much enjoyed.

This book is one of a whole handful of related books I bought recently now that I’m biting one more bullet and buying Kindle books from Amazon (the price being a huge draw; science books tend to be pricy in physical form).

The thread that runs through them is that each author is committed to realism, and each is disturbed about where modern physics has gone. Me, too!

Continue reading


BB #75: Gloves and Shoes

Speaking of Bell tests, I’ve noticed that science writers often struggle to find a good metaphor that illustrates just what’s so weird about the correlation between entangled particles. Bell tests are complex, and because they squat in the middle of quantum weirdness, they’re hard to explain in any classical terms.

I thought I had the beginnings of a good metaphor, at least the classical part. But the quantum part is definitely a challenge. (All the more so because I’m still not entirely clear on the deep details of Bell’s theorem myself.)

Worse, I think my metaphor fails the ping-pong ball test.

Continue reading


QM 101: Fun with Photons

Last time I explored the quantum spin of photons, which manifests as the polarization of light. (Note that all forms of light can be polarized. That includes radio waves, microwaves, IR, UV, x-rays, and gamma rays. Spin — polarization — is a fundamental property of photons.)

I left off with some simple experiments that demonstrated the basic behavior of polarized light. They were simple enough to be done at home with pairs of sunglasses, yet they demonstrate the counter-intuitive nature of quantum mechanics.

Here I’ll dig more into those and other experiments.

Continue reading


BB #74: Which MWI?

I finished The Quantum Labyrinth: How Richard Feynman and John Wheeler Revolutionized Time and Reality (2017), by Paul Halpern. As the title implies, the book revolves around the careers and lives of John A. Wheeler (1911–2008) and Richard Feynman (1918–1988). After Feynman graduated from MIT he became Wheeler’s teaching assistant at Princeton. The two men, despite very different personalities, became life-long friends and collaborators.

One of Wheeler’s many claims to fame is his promotion of Hugh Everett’s PhD thesis, The Theory of the Universal Wave Function. That paper, of course, is the seed from which grew the Many Worlds Interpretation of Quantum Mechanics.

The thing is, there are two major versions of the MWI.

Continue reading