Tag Archives: mind

Knowing Other Minds

I’ve got stuff on my mind!

My post last month about Dr. Gregory Berns and his studies of animal minds ran long because I also discussed Thomas Nagel and his infamous paper. Dr Berns referenced an aspect of that paper many times. It seemed like a bone of contention, and I wanted to explore it, so I needed to include details about Nagel’s paper.

The point is, at the end of the post, there’s a segue from the “Sebald Gap” between humans and animals to the idea we can never really even understand another human (let alone an animal). My notes for the post included more discussion about that, but the post ran long so I only mentioned it.

It’s taken a while to circle back to it, but better late than never?

Continue reading


Brains Are Not Computers

I cracked up when I saw the headline: Why your brain is not a computer. I kept on grinning while reading it because it makes some of the same points I’ve tried to make here. It’s nice to know other people see these things, too; it’s not just me.

Because, to quote an old gag line, “If you can keep your head when all about you are losing theirs,… perhaps you’ve misunderstood the situation.” The prevailing attitude seems to be that brains are just machines that we’ll figure out, no big deal. So it’s certainly (and ever) possible my skepticism represents my misunderstanding of the situation.

But if so I’m apparently not the only one…

Continue reading


A Mind Algorithm?

In the last post I explored how algorithms are defined and what I think is — or is not — an algorithm. The dividing line for me has mainly to do with the requirement for an ordered list of instructions and an execution engine. Physical mechanisms, from what I can see, don’t have those.

For me, the behavior of machines is only metaphorically algorithmic. Living things are biological machines, so this applies to them, too. I would not be inclined to view my kidneys, liver, or heart, as embodied algorithms (their behavior can be described by algorithms, though).

Of course, this also applies to the brain and, therefore, the mind.

Continue reading


The Meta-Problem

Philosopher and cognitive scientist Dave Chalmers, who coined the term hard problem (of consciousness), also coined the term meta hard problem, which asks why we think the hard problem is so hard. Ever since I was introduced to the term, I’ve been trying figure out what to make of it.

While the hard problem addresses a real problem — how phenomenal experience arises from the physics of information processing — the latter is about our opinions regarding that problem. What it tries to get at, I think, is why we’re so inclined to believe there’s some sort of “magic sauce” required for consciousness.

It’s an easy step when consciousness, so far, is quite mysterious.

Continue reading


Real vs Simulated

Indulging in another round of the old computationalism debate reminded me of a post I’ve been meaning to write since my Blog Anniversary this past July. The debate involves a central question: Can the human mind be numerically simulated? (A more subtle question asks: Is the human mind algorithmic?)

An argument against is the assertion, “Simulated water isn’t wet,” which makes the point that numeric simulations are abstractions with no physical effects. A common counter is that simulations run on physical systems, so the argument is invalid.

Which makes no sense to me; here’s why…

Continue reading


Failed States (part 3)

This ends an arc of exploration of a Combinatorial-State Automata (CSA), an idea by philosopher and cognitive scientist David Chalmers — who despite all these posts is someone whose thinking I regard very highly on multiple counts. (The only place my view diverges much from his is on computationalism, and even there I see some compatibility.)

In the first post I looked closely at the CSA state vector. In the second post I looked closely at the function that generates new states in that vector. Now I’ll consider the system as a whole, for it’s only at this level that we actually seek the causal topology Chalmers requires.

It all turns on how much matching abstractions means matching systems.

Continue reading


Failed States (part 2)

This is a continuation of an exploration of an idea by philosopher and cognitive scientist David Chalmers — the idea of a Combinatorial-State Automata (CSA). I’m trying to better express ideas I first wrote about in these three posts.

The previous post explored the state vector part of a CSA intended to emulate human cognition. There I described how illegal transitory states seem to violate any isomorphism between mental states in the brain and the binary numbers in RAM locations that represent them. I’ll return to that in the next post.

In this post I want to explore the function that generates the states.

Continue reading


Failed States (part 1)

Last month I wrote three posts about a proposition by philosopher and cognitive scientist David Chalmers — the idea of a Combinatorial-State Automata (CSA). I had a long debate with a reader about it, and I’ve pondering it ever since. I’m not going to return to the Chalmers paper so much as focus on the CSA idea itself.

I think I’ve found a way to express why I see a problem with the idea. I’m going to have another go at explaining it. The short version turns on how mental states transition from state to state versus how a computational system must handle it (even in the idealized Turing Machine sense — this is not about what is practical but about what is possible).

“Once more unto the breach, dear friends, once more…”

Continue reading


Chalmers Again

Over the last few days I’ve found myself once again carefully reading a paper by philosopher and cognitive scientist, David Chalmers. As I said last time, I find myself more aligned with Chalmers than not, although those three posts turned on a point of disagreement.

This time, with his paper Facing Up to the Problem of Consciousness (1995), I’m especially aligned with him, because the paper is about the phenomenal aspects of consciousness and doesn’t touch on computationalism at all. My only point of real disagreement is with his dual-aspects of information idea, which he admits is “extremely speculative” and “also underdetermined.”

This post is my reactions and responses to his paper.

Continue reading


Octopus Brains

I’ve long been fascinated by stories about octopuses. I confess I’ve eaten a few, too, and it’s obviously a worse than eating dog, which I could never. (OTOH, properly done calamari is really yummy!)

It’s not just that octopuses (and it is octopuses, by the way; the root is Greek, not Latin) are jaw-dropping smart. It’s that their intelligence operates in a completely different brain than ours — an evolutionary branch that considerably predates the dinosaurs. It isn’t just the top brain and eight satellite brains; it’s that their entire body, in some sense, and especially their skin, is their brain.

Check out this 13-minute TED Talk by marine biologist Roger Hanlon:

Continue reading