Last time I began exploring the similarity between the **Schrödinger equation** and a classical **heat diffusion equation**. In both cases, valid solutions push the *high curvature* parts of their respective functions towards flatness. The effect is generally an averaging out in whatever space the function occupies.

Both equations involve ** partial derivatives**, and I ignored that in our simple one-dimensional case. Regular derivatives were sufficient. But math in two dimensions, let alone in three, requires partial derivatives.

Which were yet another hill I faced trying to understand physics math. If they are as opaque to you as they were to me, read on…