Tag Archives: Mathematical Universe Hypothesis

Complexity and Randomness

Last week, when I posted about the Mathematical Universe Hypothesis (MUH), I noted that it has the same problem as the Block Universe Hypothesis (BUH): It needs to account for its apparent out-of-the-box complexity. In his book, Tegmark raises the issue, but doesn’t put it to bed.

He invokes the notion of Kolmogorov complexity, which, in a very general sense, is like comparing things based on the size of their ZIP file. It’s essentially a measure of the size of information content. Unfortunately, his examples raised my eyebrows a little.

Today I thought I’d explore why. (Turns out I’m glad I did.)

Continue reading


Tegmark: MUH? Meh!

I finally finished Our Mathematical Universe (2014) by Max Tegmark. It took me a while — only two days left on the 21-day library loan. I often had to put it down to clear my mind and give my neck a rest. (The book invoked a lot of head-shaking. It gave me a very bad case of the Yeah, buts.)

I debated whether to post this for Sci-Fi Saturday or for more metaphysical Sabbath Sunday. I tend to think either would be appropriate to the subject matter. Given how many science fiction references Tegmark makes in the book, I’m going with Saturday.

The hard part is going to be keeping this post a reasonable length.

Continue reading