# Tag Archives: faster than light

## SR #X5: Still No FTL Radio?

Back in 2015, to celebrate Albert Einstein’s birthday, I wrote a month-long series of posts about Special Relativity. I still regard it as one of my better efforts here. The series oriented on explaining to novices why faster-than-light travel (FTL) is not possible (short answer: it breaks reality).

So no warp drive. No wormholes or ansibles, either, because any FTL communication opens a path to the past. When I wrote the series, I speculated an ansible might work within an inertial frame. A smarter person set me straight; nope, it breaks reality. (See: Sorry, No FTL Radio)

## SR #X4: Matrix Spacetime

I was gonna give us all the day off today, honestly, I was! My Minnesota Twins start their second game in about an hour, and I really planned to just kick back, watch the game, have a couple of beers, and enjoy the day. And since tomorrow’s March wrap-up post is done and queued, more of the same tomorrow.

But this is too relevant to the posts just posted, and it’s about Special Relativity, which is a March thing to me (because Einstein), so it kinda has to go here. Now or never, so to speak. And it’ll be brief, I think. Just one more reason I’m so taken with matrix math recently; it’s providing all kinds of answers for me.

Last night I realized how to use matrix transforms on spacetime diagrams!

## SR #X3: Spacetime Interval

Speaking of Special Relativity, back when I wrote the SR series, one topic I left along the wayside was the concept of the spacetime interval. It wasn’t necessary for the goals of the series, and there’s only so much one can fit in. (And back then, the diagrams I wanted to make would have been a challenge with the tool I was using.)

But now that we’re basking in the warm, friendly glow of March Mathness and reflecting on Special Relativity anyway, it seems like a good time to loop back and catch up on the spacetime interval, because it’s an important concept in SR.

It concerns what is invariant to all observers when both time and space measurements depend on relative motion.

## SR #X2: Sorry, No FTL Radio

Earlier, in the March Mathness post, I mentioned Albert Einstein was born on March 14th. That’s also Pi Day, which deserved its own pi post (about pizza pi), so old Al had to wait for me to address a topic I’ve needed to address for several months.

To wit: Some guy was wrong on the internet.

That guy was me.

Back in 2015 (also celebrating Einstein’s birthday), I wrote a series of posts exploring Special Relativity. Near the end of the series, writing about FTL radio, I said (assuming an “ansible” existed) I wasn’t convinced it violated causality if the frames of reference were matched.

## SR #25: FTL Drive

We’re finally sliding into home plate in this series (it’s baseball season, so I get to use baseball metaphors now). After spending a lot of time looking into how Special Relativity works, we’re able to at last explore how it applies to the idea of faster-the-light travel.

Last time we saw that FTL radio seems hopeless — at least at communicating between frames of reference in motion with regard to each other. It’s possible there might be a loophole for FTL communication between matched frames. (If nothing else, it may be fertile background for some science fiction.)

Today we examine the idea of FTL motion — of “warp drive!”

Over the last five weeks I’ve tried to explain and explore Einstein’s Theory of Special Relativity. We’ve seen that motion, velocity, simultaneity, length, and even time, are all relative to your frame of reference and that motion changes the perceptions of those things for observers outside your frame.

All along I’ve teased the idea that the things I’m showing you demonstrate how the dream of faster-than-light (FTL) travel is (almost certainly) impossible. Despite a lot of science fiction, there probably isn’t any warp drive in our futures.

Now it’s (finally) time to find out just exactly why that is.

## SR #23: Light Clocks

This week I’ve focused on the relativity of time under motion, and we’ve seen that moving very fast allows “time travel” into the future. Very handy if you don’t mind the one-way trip. What’s more, a spaceship capable of such a flight is physically possible, so it’s a “time machine” we know works!

On Monday I described how fast-moving, but short-lived, muons created high in the atmosphere live long enough to reach the ground due to time dilation. That’s just one place we see Special Relativity actually working exactly as Einstein described. For another, fast-moving particles at CERN have decay times showing they, too, have slow clocks.

As we’ll see today, light’s behavior requires time appear to run slower!

## Special Al Day!

Okay. I’ve been teasing doubly special Saturday and (especially this year) since last Monday (and planting hints along the way). If you haven’t figured it out by now, today is Albert Einstein’s birthday. It’s also pi day, and how cool is it that a guy like Al was born on pi day?

So: Happy Birthday Albert! The (especially this year) part is because it’s extra-special pi day (3/14/15) and because this year I’m finally going to do what I’ve been wanting to do here to commemorate Einstein’s birthday since I started this blog back in ought-eleven.

I’m going to write — at length — about Special Relativity!