Monthly Archives: April 2015

SR #17: Relative Length

sr17-0Last time’s Too Long Train illustration demonstrates that length is relative. Observers moving at different rates measure the length of an object differently. The faster something moves in your frame of reference, the more its length contracts along the direction of motion.

In previous weeks we saw that motion, speed, and simultaneity, are relative; now we see that length is also relative. Next week I’ll talk about the relativity of time. Today I want to dig a little deeper into the length contraction part of Special Relativity.

It’ll be a factor when we get to the spaceships!

Continue reading


SR #16: A Train Too Long

sr16-0The last two train examples (Lightning Strikes and Treaty Train) focused on how simultaneity is relative to motion. Our final train example focuses on how length is relative to motion. The faster something goes relative to you, the more it appears foreshortened along its direction of travel.

This example involves a train that, if it stopped halfway through, is too long for a tunnel — it would stick out both ends. But motion contracts length, so if the train goes fast enough, it becomes short enough to fit entirely inside the tunnel.

And it’s not an illusion; the train really does fit inside!

Continue reading


SR #15: Peace Treaty Train

sr15-0Last time we explored the Simultaneous Lightning Strikes illustration of Special Relativity. In that scenario, on-the-ground observer Al sees simultaneous lightning strikes to a passing (very) high-speed train. On-the-train observer Em agrees both bolts hit the train (one front; one rear), but sees one happening first followed by the other.

The next scenario reverses the situation. This time traveler Em sees simultaneous events on the train and bystander Al sees them happening one after the other.

Today we explore: Peace Treaty (on a Train)!

Continue reading


SR #14: Trained Lightning

sr14-0For the last three weeks I’ve been laying a firm groundwork for the more interesting part of the series. Perhaps there was too much time and detail: I seem to have lost much of my audience (not that the lecture hall was packed in the first place).

I’ve long believed in the importance of basic knowledge — it’s stood me in good stead through life. But I know not everyone shares my appetite for details. For what it’s worth, the rest is the fun part, where all that groundwork goes into action.

This week, trains; next week, spaceships!

Continue reading


SR #13: Coordinate Systems

sr13-0The main topic this week was how simultaneity is relative to your frame of reference. How there are (virtual) lines of simultaneity where all points on some line — at all distances from you — share the same moment in time. For any instant you pick, that instant — that snapshot — includes all points in your space.

A line of simultaneity freezes the relative positions of objects at a given moment — which enables distance measurements. Simple example: When their watches both read 12 noon, Al and Em were 30 miles apart. A more mathematical example uses x, y, & z (& t), but it amounts to the same thing: a coordinate system.

The gotcha is that simultaneity and coordinate systems are relative when motion is involved!

Continue reading


SR #12: Relative Simultaneity

sr12-0We started by exploring the idea that motion is relative. Now we see that the idea of simultaneity is relative! Events that Al sees as simultaneous in his frame of reference do not appear simultaneous to Em — she sees them happening one after another!

A frame of reference has lines of simultaneity that allow us to assign time coordinates to events in the reference frame. If Al and Em have different lines of simultaneity, then their coordinate systems differ— they assign different coordinates to an event!

Let’s explore that in a bit more detail…

Continue reading