Tag Archives: rational numbers

Sideband #54: Cantor’s Diagonal

mathsBe warned: these next Sideband posts are about Mathematics! Worse, they’re about the Theory of Mathematics!! But consider sticking around, at least for this one. It fulfills a promise I made in the Infinity is Funny post about how Georg Cantor proved there are (at least) two kinds of infinity: countable and uncountable. It also connects with the Smooth or Bumpy post, which considered differences between the discrete and the continuous.

This first one is pretty easy. The actual math involved is trivial, and I think it’s fascinating how the Yin/Yang of separate units versus a smooth continuum seems a fundamental aspect of reality. We can look around to see many places characterized by “bumpy” or “smooth” (including Star Trek). (The division lies at the heart of the conflict between Einstein’s Relativity and quantum physics.)

So, let’s consider Cantor.

Continue reading


Smooth or Bumpy

vu metersLast time I wrote about analog recording and how it represents a physical chain of proportionate forces directly connecting the listener to the source of the sounds. In contrast, a digital recording is just numbers that encode the sounds in an abstract form. While it’s true that digital recordings can be more accurate, the numeric abstraction effectively disconnects listeners from the original sounds.

In the first month of this blog, I wrote about analog and digital and mentioned they were mutually exclusive Yin and Yang pairs (a topic I wrote about even earlier — it was my seventh post).

Today I want to dig a little deeper into the idea of analog vs. digital!

Continue reading


Infinity is Funny

You probably have some idea of what infinity means. Something that is infinite goes on forever. But it might surprise you to know that there are different kinds of infinity, and some are bigger than others!

As an example, a circle has an infinite number of points. (Yet the circumference of the circle has finite length.) Compare that to a straight line with infinite length. Both have infinitely many points but does the finite length circle have fewer? [The answer is no.]

To understand all this, we have to first talk a bit about numbers.

Continue reading